

Path Integral Molecular Dynamics for Indistinguishable Particles

Barak Hirshberg

The molecular dynamics (MD) group at TAU

One PD, three graduate students, three undergrad interns.

We are hiring!

Looking for MSc, PhD students who are passionate about chemical physics, ML, MD simulations, and path integrals!

Outline

- What are indistinguishable particles? What is PIMD?
- Exchange effects in PIMD a great challenge!
- PIMD for bosons: reducing the scaling from $\sim N!$ to $\sim N^3$
- Fermions alleviating the sign problem
- Applications (ultracold atoms, quantum dots and supersolids)

Indistinguishable particles

Because we cannot follow the trajectory of each particle in QM,

identical particles are indistinguishable!

Symmetry repercussions

The permutation of two indistinguishable particles can only change the wavefunction by a phase factor

Bosons:
$$\hat{P}_{12}\psi(q_1, q_2) = \psi(q_1, q_2)$$

Fermions:
$$\hat{P}_{12}\psi(q_1, q_2) = -\psi(q_1, q_2)$$

PIMD for distinguishable particles

$$\langle E \rangle = -\frac{1}{Z} \frac{\partial Z}{\partial \beta}$$

$$\widehat{H} = \frac{\widehat{p}^2}{2m} + \widehat{V}(q)$$

$$\widehat{H} = \frac{\widehat{p}^2}{2m} + \widehat{V}(q) \qquad H(p, q) = \sum_{j=1}^{P} \frac{p_j^2}{2m} + V_o + \frac{1}{P} \sum_{j=1}^{P} V(q_j)$$

$$Z = Tr(e^{-\beta \widehat{H}}) \sim \int \langle q | e^{-\beta \widehat{H}} | q \rangle dq$$

$$Z \sim \lim_{P \to \infty} \int e^{-\beta H(\boldsymbol{p}, \boldsymbol{q})} d\boldsymbol{p} d\boldsymbol{q}$$

More than one particle

T.E. Markland and M. Ceriotti (2018) *Nat. Rev. Chem.* DOI: 10.1038/s41570-017-0109

Part I: Bosons

Exchange symmetry in the PI formalism

The trace needs to be evaluated in a (anti-)symmetrized basis

$$Z = \int [\langle q_1 q_2 | e^{-\beta \hat{H}} | q_1 q_2 \rangle \pm \langle q_1 q_2 | e^{-\beta \hat{H}} | q_2 q_1 \rangle] dq_1 dq_2$$

$$Z \sim \int (e^{-\beta V_{OO}} \pm e^{-\beta V_O}) d\mathbf{q}_1 d\mathbf{q}_2 \equiv \int e^{-\beta V_B^{(2)}} d\mathbf{q}_1 d\mathbf{q}_2$$

Sampling Z in MD, a clear physical picture

$$Z \sim \int (e^{-\beta V_{OO}} + e^{-\beta V_O}) d\mathbf{q}_1 d\mathbf{q}_2 \equiv \int e^{-\beta V_B^{(2)}} d\mathbf{q}_1 d\mathbf{q}_2$$

$$V_B^{(2)} = -\frac{1}{\beta} \ln \left[e^{-\beta V_{OO}} + e^{-\beta V_O} \right]$$

$$\vec{F} = \frac{\vec{F}_{oo}e^{-\beta V_{oo}} + \vec{F}_{o}e^{-\beta V_{oo}}}{e^{-\beta V_{oo}} + e^{-\beta V_{oo}}}$$

The force is the weighted average of contributions due to all ring polymer configurations!

More than two particles

For N=3

$$Z \sim \frac{1}{6} \int \left(e^{-\beta V_{000}} \pm 3e^{-\beta V_{00}} + 2e^{-\beta V_{\Delta}} \right) d\mathbf{q}_1 d\mathbf{q}_2 d\mathbf{q}_3$$

- For N=4? N=40? N=400?
- How many configurations? How to generate them all?
- How does the number of configurations scale with N?

Cycle notation of permutations

Ring-polymer configurations

(2,3,1)

The Problem

- # of permutations $\sim N!$
- # of diagrams = p(N), still scales exponentially with N

Not practical for large N,

Is there an alternative?

Yes, there is!

- PIMC sample permutations (D.M. Ceperley)
- PIMD forces can be evaluated recursively without enumerating permutations!
 - B. Hirshberg, V. Rizzi and M. Parrinello, *PNAS* (2019) 116, 21445-21449

N = 3

Generalization: a recurrence Relation

$$e^{-\beta V_B^{(N)}(R_1,\dots,R_N)} = \frac{1}{N} \sum_{k=1}^N e^{-\beta \left[E_N^{(k)}(R_{N-k+1},\dots,R_N) + V_B^{(N-k)}(R_1,\dots,R_{N-k}) \right]}$$

$$V_B^{(N)}(R_1, \dots, R_N) = -\frac{1}{\beta} \ln \left[\frac{1}{N} \sum_{k=1}^N e^{-\beta \left[E_N^{(k)} + V_B^{(N-k)} \right]} \right]; \quad V_B^{(0)} = 0$$

• $E_N^{(k)}$ is the spring energy of a ring connecting atoms $R_{N-k+1}, ..., R_N$ sequentially.

The problem

- # of permutations $\sim N!$
- # of diagrams = p(N), still scales exponentially with N

Not practical for large N,

Is there an alternative?

The solution

- Using the recurrence relation, only $\sim N^2$ energies are needed!
- The algorithm scales as $\mathcal{O}(PN^3)$

The solution

- Using the recurrence relation, only $\sim N^2$ energies are needed!
- The algorithm scales as $\mathcal{O}(PN^3)$

Open-source implementations

Development version of LAMMPS (infrastructure by Voth Group)

https://github.com/BarakHirshberg

• Recently implemented in i-PI (Ceriotti, Rossi, Marsalek, Kapil,...)

http://ipi-code.org

S. Plimpton, J. Comp. Phys. (1995) 117, 1-19

V. Kapil et. al, Comput. Phys. Commun. (2019) 236, 214-223

Benchmarking: noninteracting particles in 2D trap

- Correct statistics as a function of temperature
- Correct ground-state energy up to N=64

Benchmarking: interacting particles in 2D trap

- Comparison to exact diagonalization by P. Mujal et al. Phys.
 Rev. A 96, 043614 (2017)
- Interacting Bosons in a 2D trap, repulsive Gaussian potential

$$U(|\vec{r}_i - \vec{r}_j|) = \frac{g}{\pi s^2} e^{-\frac{(\vec{r}_i - \vec{r}_j)^2}{s^2}}$$

• g=0 o non-interacting, g=16 o strong repulsion

Density and energy N = 2 - 4

Stronger repulsion

Interacting Bose gas in 2D, N = 32

Stronger repulsion

- As g is increased, the density drops at the center of the trap.
- The probability to find two Bosons at zero
 separation drops as well

Importance of exchange effects

- The probability for long rings indicates the importance of exchange effects
- ullet The asymptotic value P_{∞} for the longest ring is 1/N
- For a given T, repulsion interactions lower the probability for long rings

$$P_C = \frac{w_c \cdot e^{-\beta E_C}}{\frac{1}{N} \sum_{k=1}^{N} e^{-\beta \left[E_N^{(k)} + V_B^{(N-k)}\right]}}$$

Deuterium goes supersolid!

C.W. Myung, B. Hirshberg and M. Parrinello PRL (2022) 128, 045301.

Dr. C.W. Myung

<u>Indistinguishable</u> <u>quantum particle</u>

Deuterium goes supersolid!

C.W. Myung, B. Hirshberg and M. Parrinello PRL (2022) 128, 045301.

Dr. C.W. Myung

Largest system (so far) – superfluid He droplets

256 atoms, CC level PES, collaboration with Paesani group UCSD

Why do we need PIMD for bosons?

Dynamics!

PIMD can also provide approximate time correlation functions

$$C_{AB}(t) = \langle \hat{A}(0)\hat{B}(t) \rangle = \frac{1}{Z}Tr\left\{e^{-\beta \hat{H}}\hat{A}(0)e^{\frac{i}{\hbar}\hat{H}t}\hat{B}(0)e^{-\frac{i}{\hbar}\hat{H}t}\right\}$$

Ring Polymer MD uses the fictitious polymer trajectories:

$$C_{AB}(t) = \frac{1}{Z_{cl}} \int d\mathbf{q}_0 e^{-\beta V(\mathbf{q}_0)} A(\mathbf{q}_0) B(\mathbf{q}_t); \ \mathbf{q}_0 = q_1(0), \dots, q_P(0)$$

$$A(\boldsymbol{q}) = \frac{1}{P} \sum_{j=1}^{P} A(q_j)$$

Part II: Fermions

Direct sampling of fermions is not feasible

$$e^{-\beta V_F^{(N)}(R_1,\dots,R_N)} = \frac{1}{N} \sum_{k=1}^N (-1)^{k-1} e^{-\beta \left[E_N^{(k)}(R_{N-k+1},\dots,R_N) + V_F^{(N-k)}(R_1,\dots,R_{N-k}) \right]}$$

$$V_F^{(N)}(R_1, \dots, R_N) = -\frac{1}{\beta} \ln \left[\frac{1}{N} \sum_{k=1}^N (-1)^{k-1} e^{-\beta \left[E_N^{(k)} + V_B^{(N-k)} \right]} \right]; \quad V_F^{(0)} = 0$$

$$Z \sim \int e^{-\beta V_F^{(N)}} dR_1 \dots dR_N$$

Problem: The argument can be negative, $V_F^{(N)}$ becomes complex!

The solution: sample bosons and reweight

$$\langle O \rangle_F = \frac{\left\langle \varepsilon_O e^{-\beta \left[V_F^{(N)} - V_B^{(N)} \right] \right\rangle_B}}{\left\langle e^{-\beta \left[V_F^{(N)} - V_B^{(N)} \right] \right\rangle_B}} \equiv \frac{\left\langle \varepsilon_O S \right\rangle_B}{\left\langle S \right\rangle_B}$$
The sign

- Applicable to N particles (in principle)
- Commonly done in PIMC

Application – electrons in 2D quantum dots

P. Chen et al. Chem. Soc. Rev., 2016

$$\widehat{H} = -\frac{1}{2} \sum_{i=1}^{N} \nabla_{i}^{2} + \frac{1}{2} \sum_{i=1}^{N} \mathbf{r}_{i}^{2} + \sum_{i,j>i}^{N} \frac{\lambda}{|\mathbf{r}_{i} - \mathbf{r}_{j}|}; \quad \lambda \equiv \frac{e^{2}}{k l_{0} \hbar \omega_{0}}; \quad l_{0} \equiv \sqrt{\frac{\hbar}{m \omega_{0}}}$$

• $\lambda < 1$ – Exchange dominates; $\lambda > 1$ – Repulsion dominates

N=3-7 electrons in QD

6

• Blue: PIMD-B

PIMC: T. Dornheim (2019) Phys. Rev. E

Orange: PIMD-F $\lambda = 0.5$ $\langle E \rangle /\hbar \omega_0$ $\beta = 1$ • Green: PIMC 10 0.6 0.4 (S) 0.2 0.0

N=6 electrons in QD

Green: PIMC; Orange: PIMD-F; Blue: PIMD-B

The fermion sign problem

$$\langle O \rangle_F = \frac{\langle \varepsilon_O S \rangle_B}{\langle S \rangle_B}; \quad \langle S \rangle_B \sim e^{-\beta N \Delta F}$$

- As $\beta \to \infty$ calculations become exponentially harder (Ceperley).
- Most probably no general solution exists (Troyer).
- Can we push the boundaries for fixed N?

The fermion sign problem

 Simulate systems with added fictitious repulsion.

$$\widehat{H}(\lambda) = \widehat{H}_0 + \eta \widehat{U}$$

Correct using a variational principle

$$F_{\widehat{H}_0} \le F_{\widehat{H}} - \eta \langle \widehat{U} \rangle_{\widehat{H}}$$

Or using thermodynamic integration

$$F_{H_0} = F_H - \int_0^{\eta} \mathrm{d}\eta' \langle \widehat{U} \rangle_H$$

JCP (2020) 152, 171102, JCP (2020) 153, 234104.

Bogoliubov inequality: noninteracting electrons

Added Gaussian repulsion interaction allow 3x lower T

Thermodynamic integration

Speedup T gained by adding fictitious repulsion is 10^3-10^5

$$T(\eta) = \frac{\langle s \rangle_H}{\langle s \rangle_{H_0}}$$

Conclusions - bosons

PNAS (2019) 116, 21445-21449, PRL (2022) 128, 045301.

- A new method for simulating Bosonic systems.
- Evaluation of forces can be done without enumerating or sampling permutations.
- The resulting algorithm reduced the scaling from $\sim N!$ to $\sim N^3$.
- First application of PIMD to large bosonic systems.
- Prediction of supersolid deuterium at P>800 GPa and T<1 K.

Conclusions - fermions

JCP (2020) 152, 171102; JCP (2020) 153, 234104.

- We can apply PIMD-B to evaluate fermionic observables.
- Very good agreement with PIMC (if sign ≥ 0.01).
- Using the Bogoliubov inequality, ~3x lower temperatures can be sampled.
- Using thermodynamic integration, 3-5 orders of magnitude speedups are obtained.

Thank you!

M. Parrinello

C.W. Myung

V. Rizzi

M. Invernizzi

יד הנדיב یاد هَنَدیڤ Yad Hanadiv

