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The molecular dynamics (MD) group at TAU
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One PD, three graduate students, three undergrad interns.
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We are hiring!

Looking for MSc, PhD students who are passionate about 

chemical physics, ML, MD simulations, and path integrals!

Sampling long 
timescales in 

MD

Quantum 
simulations at 
a classical cost



Outline

• What are indistinguishable particles? What is PIMD?

• Exchange effects in PIMD – a great challenge!

• PIMD for bosons: reducing the scaling from ~𝑵! to ~𝑵𝟑

• Fermions – alleviating the sign problem

• Applications (ultracold atoms, quantum dots and supersolids)

4



Indistinguishable particles

Not identical Identical
(but distinguishable in classical mechanics)

Because we cannot follow the trajectory of each particle in QM, 

identical particles are indistinguishable!

1 2



Symmetry repercussions

The permutation of two indistinguishable particles can only 

change the wavefunction by a phase factor

Bosons: ෠𝑃12𝜓 𝑞1, 𝑞2 = 𝜓 𝑞1, 𝑞2

Fermions: ෠𝑃12𝜓 𝑞1, 𝑞2 = −𝜓 𝑞1, 𝑞2



PIMD for distinguishable particles
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More than one particle

T.E. Markland and M. Ceriotti (2018) Nat. Rev. Chem.
DOI: 10.1038/s41570-017-0109
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Part I: Bosons
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Exchange symmetry in the PI formalism

𝑍~න 𝑒−𝛽𝑉𝑜𝑜 ± 𝑒−𝛽𝑉𝑂 𝑑𝒒1𝑑𝒒2 ≡ න𝑒−𝛽𝑉𝐵
2
𝑑𝒒1𝑑𝒒2

The trace needs to be evaluated in a (anti-)symmetrized basis

𝑍 = න 𝑞1𝑞2 𝑒
−𝛽෡𝐻 𝑞1𝑞2 ± 𝑞1𝑞2 𝑒

−𝛽෡𝐻 𝑞2𝑞1 𝑑𝑞1𝑑𝑞2
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The force is the weighted average of contributions due to all 

ring polymer configurations!

Sampling 𝑍 in MD, a clear physical picture

𝑍~න 𝑒−𝛽𝑉𝑜𝑜 + 𝑒−𝛽𝑉𝑂 𝑑𝒒1𝑑𝒒2 ≡ න𝑒−𝛽𝑉𝐵
2
𝑑𝒒1𝑑𝒒2

𝑉𝐵
(2)

= −
1

𝛽
ln 𝑒−𝛽𝑉𝑜𝑜 + 𝑒−𝛽𝑉𝑂

Ԧ𝐹 =
Ԧ𝐹𝑜𝑜𝑒

−𝛽𝑉𝑜𝑜 + Ԧ𝐹𝑂𝑒
−𝛽𝑉𝑂

𝑒−𝛽𝑉𝑜𝑜 + 𝑒−𝛽𝑉𝑂
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More than two particles
For N=3 

𝑍~
1

6
න 𝑒−𝛽𝑉𝑜𝑜𝑜 ± 3𝑒−𝛽𝑉𝑂𝑜 + 2𝑒−𝛽𝑉∆ 𝑑𝒒1𝑑𝒒2𝑑𝒒3

1 2 3 1 2 3
1 2

3
𝑉𝑜𝑜𝑜 𝑉𝑂𝑜 𝑉Δ

• For N=4? N=40? N=400?

• How many configurations? How to generate them all? 

• How does the number of configurations scale with N? 12



Cycle notation of permutations

(1,2,3)
(1,2,3)

(1,2,3)
(1,3,2)

(1)(2)(3) (1)(23)
(1,2,3)
(2,3,1)

(123)



Ring-polymer configurations

(1,2,3)

𝑽𝒐𝒐𝒐

(1,3,2) (3,2,1)

(2,3,1) (3,1,2)

𝑽𝚫

(1)(2)(3)
(2,1,3)

𝑽𝑶𝒐

(1)(23) (13)(2) (12)(3)

(123) (132)

1 2

3

1 2

3

1 2

3

1 3

2

2 3

1

2 1

3



The Problem

• # of permutations ~𝑵!

• # of diagrams = 𝒑 𝑵 , still 

scales exponentially with 𝑵

Not practical for large 𝑵,

Is there an alternative?



Yes, there is!
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•PIMC – sample permutations (D.M. Ceperley) 

•PIMD – forces can be evaluated recursively without 

enumerating permutations!

B. Hirshberg, V. Rizzi and M. Parrinello, PNAS (2019) 116, 21445-21449



𝑵 = 𝟏 𝑵 = 𝟐

𝑵 = 𝟑

1 1 2 1 2
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Generalization: a recurrence Relation
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𝑉𝐵
𝑁

𝑅1, … , 𝑅𝑁 = −
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• 𝑬𝑵
𝒌

is the spring energy of a ring connecting atoms 
𝑹𝑵−𝒌+𝟏, … , 𝑹𝑵 sequentially.



The problem

• # of permutations ~𝑵!

• # of diagrams = 𝒑 𝑵 , still 

scales exponentially with 𝑵

Not practical for large 𝑵,

Is there an alternative?



The solution

• Using the recurrence 

relation, only ~𝑵𝟐 energies 

are needed!

• The algorithm scales as 

𝓞 𝑷𝑵𝟑



The solution

• Using the recurrence 

relation, only ~𝑵𝟐 energies 

are needed!

• The algorithm scales as 

𝓞 𝑷𝑵𝟑
Slope ≈ 𝟑

Private Code



Open-source implementations

• Development version of LAMMPS (infrastructure by Voth Group)

• Recently implemented in i-PI (Ceriotti, Rossi, Marsalek, Kapil,…)

https://github.com/BarakHirshberg

http://ipi-code.org

S. Plimpton, J. Comp. Phys. (1995) 117, 1-19
V. Kapil et. al, Comput. Phys. Commun. (2019) 236, 214-223

https://github.com/BarakHirshberg
http://ipi-code.org/


Benchmarking: noninteracting particles in 2D trap
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• Correct statistics as a function of temperature

• Correct ground-state energy up to 𝐍 = 𝟔𝟒

𝑵 = 𝟐 𝑵 = 𝟏𝟔



Benchmarking: interacting particles in 2D trap
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• Comparison to exact diagonalization by P. Mujal et al. Phys. 

Rev. A 96, 043614 (2017)

• Interacting Bosons in a 2D trap, repulsive Gaussian potential

𝑼 𝒓𝒊 − 𝒓𝒋 =
𝒈

𝝅𝒔𝟐
𝒆
−
𝒓𝒊−𝒓𝒋

𝟐

𝒔𝟐

• 𝒈 = 𝟎 → non-interacting, 𝒈 = 𝟏𝟔 → strong repulsion



Density and energy 𝑵 = 𝟐 − 𝟒
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𝑵 = 𝟐

𝑵 = 𝟑

𝑵 = 𝟒

𝑵 = 𝟐

𝑵 = 𝟑

𝑵 = 𝟒

Stronger repulsion



Interacting Bose gas in 2D, 𝑵 = 𝟑𝟐
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• As 𝒈 is increased, the 

density drops at the 

center of the trap.

• The probability to find 

two Bosons at zero 

separation drops as well

Stronger repulsion



Importance of exchange effects
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𝑃𝐶 =
𝑤𝑐 ⋅ 𝑒

−𝛽𝐸𝐶

1
𝑁
σ𝑘=1
𝑁 𝑒

−𝛽 𝐸𝑁
𝑘
+𝑉𝐵

𝑁−𝑘

• The probability for long rings indicates the importance of exchange effects

• The asymptotic value 𝑷∞ for the longest ring is 𝟏/𝑵

• For a given T, repulsion interactions lower the probability for long rings

𝑵 = 𝟐

𝑵 = 𝟑𝟐

𝑵 = 𝟐, 𝟑𝟐

Stronger repulsion



Deuterium goes supersolid!

28

Dr. C.W. Myung

C.W. Myung, B. Hirshberg and M. Parrinello PRL (2022) 128, 045301.



Deuterium goes supersolid!
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Dr. C.W. Myung

C.W. Myung, B. Hirshberg and M. Parrinello PRL (2022) 128, 045301.

𝑆
(𝑞
)

𝑞 [Å−1]

𝑃 = 800 𝐺𝑃𝑎



Largest system (so far) – superfluid He droplets

256 atoms, CC level PES, collaboration with Paesani group UCSD



Why do we need PIMD for bosons?
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Dynamics!

PIMD can also provide approximate time correlation functions

𝐶𝐴𝐵 𝑡 = መ𝐴 0 ෠𝐵 𝑡 =
1

𝑍
𝑇𝑟 𝑒−𝛽෡𝐻 መ𝐴 0 𝑒

𝑖
ℏ
෡𝐻𝑡 ෠𝐵 0 𝑒−

𝑖
ℏ
෡𝐻𝑡

Ring Polymer MD uses the fictitious polymer trajectories:

𝐶𝐴𝐵 𝑡 =
1

𝑍𝑐𝑙
∫ 𝑑𝒒0𝑒

−𝛽𝑉 𝒒0 𝐴 𝒒0 𝐵 𝒒𝑡 ; 𝒒0 = 𝑞1 0 ,… , 𝑞𝑃(0)

𝐴 𝒒 =
1

𝑃
෍

𝑗=1

𝑃

𝐴 𝑞𝑗

Habershon, Manolopoulos et al. Annu. Rev. Phys. Chem. (2013) 64, 387–413; Althorpe Eur. Phys. J. B (2021) 94, 155 .



Part II: Fermions
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Direct sampling of fermions is not feasible
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𝑉𝐹
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; 𝑉𝐹
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𝑍~∫ 𝑒−𝛽𝑉𝐹
𝑁
𝑑𝑅1…𝑑𝑅𝑁

𝑒−𝛽𝑉𝐹
𝑁

𝑅1,…,𝑅𝑁 =
1

𝑁
෍

𝑘=1

𝑁

−1 𝑘−1𝑒
−𝛽 𝐸𝑁

𝑘
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Problem: The argument can be negative, 𝑽𝑭
(𝑵)

becomes complex!



The solution: sample bosons and reweight
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𝑂 𝐹 =
𝜀𝑂𝑒

−𝛽 𝑉𝐹
(𝑁)

−𝑉𝐵
𝑁

𝐵

𝑒
−𝛽 𝑉𝐹

(𝑁)
−𝑉𝐵

𝑁

𝐵

≡
𝜀𝑂𝑠 𝐵

𝑠 𝐵

• Applicable to N particles (in principle)

• Commonly done in PIMC

The sign



Application – electrons in 2D quantum dots 
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P. Chen et al. Chem. Soc. Rev., 2016

෡𝐻 = −
1

2
෍

𝑖=1

𝑁

∇𝑖
2 +

1

2
෍

𝑖=1

𝑁

𝒓𝑖
2 + ෍

𝑖,𝑗>𝑖

𝑁
𝜆

𝒓𝑖 − 𝒓𝑗
; 𝜆 ≡

𝑒2

𝑘𝑙0ℏ𝜔0
; 𝑙0 ≡

ℏ

𝑚𝜔0

• 𝝀 < 𝟏 – Exchange dominates;     𝝀 > 𝟏 – Repulsion dominates 



N=3-7 electrons in QD
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𝜷 = 𝟏

𝝀 = 𝟎. 𝟓

PIMC: T. Dornheim (2019) Phys. Rev. E

• Blue: PIMD-B

• Orange: PIMD-F

• Green: PIMC



N=6 electrons in QD
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• Green: PIMC; Orange: PIMD-F; Blue: PIMD-B

𝜷 = 𝟏 𝝀 = 𝟎. 𝟓



The fermion sign problem
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𝑂 𝐹 =
𝜀𝑂𝑠 𝐵

𝑠 𝐵
; 𝑠 𝐵~𝑒

−𝛽𝑁𝛥𝐹

• As 𝜷 → ∞ calculations become exponentially harder (Ceperley).

• Most probably no general solution exists (Troyer).

• Can we push the boundaries for fixed N?



The fermion sign problem
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• Simulate systems with added 

fictitious repulsion.

෡𝐻(𝜆) = ෡𝐻0 + 𝜂෡𝑈

• Correct using a variational principle

𝐹෡𝐻0
≤ 𝐹෡𝐻 − 𝜂 ෡𝑈 ෡𝐻

• Or using thermodynamic integration

𝐹𝐻0 = 𝐹𝐻 −න
0

𝜂

d𝜂′ ෡𝑈
𝐻

JCP (2020) 152, 171102, JCP (2020) 153, 234104.



Bogoliubov inequality: noninteracting electrons
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Added Gaussian repulsion interaction allow 3x lower T



Thermodynamic integration
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Speedup 𝑻 gained by adding fictitious repulsion is 103-105

𝑇(𝜂) =
𝑠 𝐻

𝑠 𝐻0



Conclusions - bosons

• A new method for simulating Bosonic systems. 

• Evaluation of forces can be done without enumerating or 

sampling permutations.

• The resulting algorithm reduced the scaling from ~𝑵! to ~𝑵𝟑.

• First application of PIMD to large bosonic systems.

• Prediction of supersolid deuterium at P>800 GPa and T<1 K.
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PNAS (2019) 116, 21445-21449, PRL (2022) 128, 045301.



Conclusions - fermions

• We can apply PIMD-B to evaluate fermionic observables.

• Very good agreement with PIMC (if sign ≥ 𝟎. 𝟎𝟏).

• Using the Bogoliubov inequality, ~3x lower temperatures can 

be sampled.

• Using thermodynamic integration, 3-5 orders of magnitude 

speedups are obtained.
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JCP (2020) 152, 171102; JCP (2020) 153, 234104.



Thank you!

M. Parrinello

V. Rizzi
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M. Invernizzi

C.W. Myung


