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1
Introduction

1.1 Energy and length scales in matter

Earth, at temperatures around -20 to +40oC is very rich in forms of
matter. We see different phases, namely solids, liquids, gases; we see
also composite materials which are weakly bound. Almost all organic
materials are like that. The structure of matter is determined on sev-
eral very different scales of energy and lengths. When discussing these
scales, we need to keep in mind that matter, as we know it on earth
exists in room temperature, i.e close to T ≈ 300K, which dictates a
“thermal” energy, i.e. average kinetic energy per degree of freedom of
Etherm = kBT ≈ 0.025eV.

1. Neutrons and protons interact via the strong, weak and electromag-
netic forces make up a positively charged nucleus; the size of the
nucleus is typically a femtometer (10−6nm). It is positively charged
and the energy to pull out a proton or a neutron from a stable nu-
cleus or to excite vibrational motion within it is measured in millions
of electron volts (106eV ≈ 107kcal/mole).

2. Nuclei and electrons interact via the electromagnetic forces to
make an atom. The electrons do not fall into the nucleus due to
the quantum mechanical effect that squeezing an electron into a
small region of space increases its kinetic energy (Heisenberg’s
uncertainty principle). Thus, the atom is held by a combination of
attractive electromagnetic forces and repulsive forces of quantum
mechanical origin. It has a typical radius of 0.1− 0.5nm. The energy
required to pull an electron out of an atom or to excite an electron
ranges from keVs for core electrons down to ∼ 1− 4× 102 kcal/mole
for the valence electrons. These energies are much smaller than the
energies that make up the nuclei and therefore have almost no
effect on the nuclear structure.

3. Atoms interact via electromagnetic forces and form molecules. The
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energy needed to pull an atom out of a molecule is on the order of
∼ 100kcal/mole and to the energy of vibrational motion of atoms
in a molecule is typically 2kcal/mole. These energies are not too
different from the energies of the valence electrons in atoms. There-
fore atoms do not keep their identity when forming the molecular
bonds. Molecules come in all sizes. The smallest molecule is H2

with a length of 0.07nm however the DNA of a living cell is also a
molecule and it is composed of thousands of atoms hence having
lengths on the order of 10− 100nm. In addition to molecules, atoms
can interact to give molecules of “infinite” size, i.e. solids.

4. Molecules interact too. The forces are of electromagnetic origin
mixing with the quantum mechanical nature of electrons. These
interactions determine many properties of materials. For exam-
ple, the freezing and boiling temperatures of materials, or the way
proteins and DNA/RNA fold, or the tendency of salts to dissolve in
water and the surface tension of water. The strength of the such
non-covalent intercations can be measured by their boiling temper-
ature Tb at 1atm. It is possible to prove that the binding energy is
ε ≈ 20kBTb/n. 1 In the table below we show the bond energy, as es- 1 Consider water. The heat of evapo-

ration of a mole of molecules at con-
stant temperature and pressure (1
atm) is the change in enthalpy, given
by ∆Hvap = Tb∆S where ∆S is the
change, due mainly to translational
and rotational entropy. The former
∆Str = kB ln

vliq
vvap

, is estimated through
the ratio of molar volumes: typically
1000 (the molecular mass of H2O is
1 + 1 + 16 = 18, (1 mole is 18 g),
which is 18 cm3 (water density is 1 in
cgs units) while the molar volume of
ideal gas is 22.4 L ≈ 20 × 103) and
∆Str ≈ 7.1kB , and the latter is on the
order of ≈ 2.5kB. So, all in all ∆S ≈ 10kB
and ∆Hvap ≈ 10kBTb. This heat is
the bond energy per molecule. If each
molecule in the liquid phase is connected
to n neighbors and if each bond has
energy ε then the energy required to
release a molecule is nε/2 (divide by
two since ε is shared by two molecules).
Thus, nε/2 = 10kBTb =⇒ ε ≈ 20kBTb/n
.

timated by the boiling point and the more accurate value measured
directly by experiment. It is seen that the energies associated with
non-covalent interactions have quite a range, starting from 10−2

kcal/mole and reaching approximately 10kcal/mole. This range of
forces are due to different mechanisms by which they appear and
this is the subject of the present lecture.

Tb/K n
Bond energy (kcal/moles)
20kBTb/n Experiment

He 4.2 12 0.014 0.022
Ar 87 12 0.29 0.28
Xe 166 12 0.55 0.56

CH4 111.5 12 0.62 0.36-0.60
H2O 373.2 4 3.71 4.77

5. Several types of molecular interactions are possible:

(a) “Exchange” interactions.

(b) Electrostatic interactions: these are interactions due to static
poles, dipoles, quadrupoles etc. The most well known is the
attractive hydrogen bond, which is due mainly to dipole-dipole
attraction.

(c) Inductive attractive interactions: This interaction is caused by a
static pole in one molecule which induces a static pole in another
and then interacts with it.



INTERMOLECULAR INTERACTIONS 7

(d) Dispersive attractive interactions: This is the interaction be-
tween correlated fluctuations on both molecules.





2
Electric fields and potentials

2.1 The concepts of electric field and electric potential

Consider a charge ea at position ra = (xa, ya, za) in 3D space and a
“test charge” q placed at position r = (x, y, z).The force exerted on q
depends on its position r and its charge q and is given by the law due
to Charles Augustin de Coulomb (c. 1780):

F (q, r) = q× 1
4πε0

ea (r− ra)

|r− ra|3
. (2.1)

Here, ε0 is a constant called “vacuum permittivity”. This force is radial,
directed along the line connecting the two charges; it is proportional
to both q and e and to the square of the inverse displacement |r−ra|
between them.

Atomic units

Atomic unit of length is the Bohr radius
a0, of energy is the Hartree energy Eh,
of charge is the electron charge e, of
mass is the electron mass me. The equa-
tions we give in the text do not refer to
units but the examples will employ often
atomic units. Sometimes we will use
other units. Here are useful conversion
factors:

Symbol SI Conversion

Length a0 5.292 10−11 M
Energy Eh 4.360 10−18 J

Electron mass me 9.109 10−31kg
Electron charge e 1.602 10−19C
Action h̄ = h/2π 1.055 10−34 J s
Perm. (4πε0)

−1 8.988 109 M2 N/C2

Michael Faraday noticed the that the force is linearly dependent on
q. He thus introduced the idea of an electric field E (r) due to a charge
ea: the electric field determines the force on a test charge q at point r
through the linear relation F = qE (r). Thus, the electric field of charge
ea located at point ra = (xa, ya, za) in 3D space is:

Ea (r) =
1

4πε0

ea (r− ra)

|r− ra|3
, (2.2)

and the field from many charges a = 1, 2, ... is just the sum of fields
from each charge:

E (r) = ∑
a

Ea (r) .

This result is due to the fact that when several forces Fa operate on the
test charge then the total force is just the sum F = ∑a Fa .

2.2 Gauss’ law

Gauss’ law states that the flux of the electric field through a closed
surface is equal to the amount of charge contained within the closed
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surface. Let us first consider an infinitesimal surface area element (see
explanation on the right) d2S suppose this are is at x then the flux is

dΦ = E · d2S

We integrate the flux to get the total flux:

The surface area element

A surface area element is a parallelo-
gram formed between two vectors a and
b and the height is h = b sin (θ) so the
area is: S = ah = ab sin (θ). This area
element is described by vector S ≡ a× b
of length S perpendicular to the plane
containing a and b (forming a right-
handed rule). Infinitesimal sides da and
db give infinitesimal area:

d2S ≡ da× db

Φ [S] =
"

S
E · d2S (2.3)

(the symbol
!

S is an integral over a closed surface). Gauss proved that
the charge Q contained within the volume enclosed by the surface S
divided by the dielectric constant is equal to the total flux Φ [S] :

Q
ε0ε

= Φ [S] (2.4)

Let us consider a point charge at the origin and take the surface S to
be a sphere of radius r. The total charge is Q = 1. From the symmetry
of the problem it is clear that E must be spherically symmetric, i.e. it is
radial (points away from or into origin) and has the same value for a
given r. Thus the flux is just the field times the area of the sphere:

Q
ε0ε

= Φ = E× 4πr2 (2.5)

and indeed we see that Coulomb’s law E = Q
4πε0εr2 is also a result of

Gauss’ law. Similarly, for an infinite line of charge along the z axis with
linear density λ we take a cylinder around the line. Then E × 2πr ×
L = Lλ

εε0
so

E⊥ =
λ

2πε0εr
(2.6)

See on the right a calculation of the field from an charged infinite
plane.

The field from an infinite
charged plane of density σ

Take a cylinder of cross section A cut-
ting the surface. The charge within the
cylinder is Q = σA and by Gauss’ law
σA
ε0ε = Φ where the flux is Φ = 2Ez × A
(factor of 2 due to two bases of the
cylinder). Thus

Ez =
σ

2ε0
(2.7)

since the field is constant, in the
z direction the potential is linear:
ϕ (r) = − σ

2ε0
z.

2.3 Work around a loop is zero

When a test particle is displaced by an infinitesimal amount ∆r under
the action of a force F the work done on it equals ∆W = −F · ∆r. If
the particle is a charge q at position r and the force is due to an electric
field then the work is ∆W = −E (r) · ∆r and along a path Γ in space
the total work is a sum of such terms, which is a “line integral”:

W [Γ] = −q
ˆ

Γ
E (r) · dr. (2.8)

An amazing quality of electric fields is this: the work W [Γ] depends
not on the entire path Γ but only on the endpoints r1 and r2. There-
fore, only endpoints count! An extreme example is when we start and
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end at the same point, i.e. the path is closed. Then the work must
always be zero.

Since the work is a function of endpoints, we can choose one end-
point as a fixed reference point rre f and then the work becomes a func-
tion of the second point r. This work function, divided by the charge of
the test particle q is called the electric potential:

ϕ (r) = −
ˆ r

rre f

E (r) · dr. (2.9)

Knowledge of the potential is equivalent to the knowledge of all
line integrals ϕ (r). The work W12 needed to displace a charge q
from r1 to r2 is thus just the charge times the potential differences:
W12 = q (ϕ (r2)− ϕ (r1)) . The scalar function ϕ (r) thus encapsu-
lates all information regarding the electric field. Knowledge of the field
determines the potential through Eq. (2.9) while knowledge of the po-
tential leads directly to the electric field since the derivative by ri of the
integral in Eq. (2.9) is equal to Ei, Thus:

Ei (r) = −ϕi (r) . (2.10)

Note that i = x, y, z on the left hand side of this equation is the Carte-
sian coordinate of the vector E while i on the right hand side is the
derivation variable (x, y or z) for the potential function derivative:
ϕx (r) =

∂ϕ(r)
∂x , ϕy (r) =

∂ϕ(r)
∂y , etc.

G

Electrostatic work for displac-
ing a charge along a path

We show a path Γ stretching and wind-
ing in space, along which a charged
particle can be displaced under the in-
fluence of a static electric field denoted
as colored. The work along the path is
equal to the line integral of Eq. (2.8).

Going back to Eq. (2.2), we can determine the electric potential of a
single charge at the ra:

ϕ (r) ≡ ea

4πε0

ˆ r

∞

(r− ra)

|r− ra|3
· dr.

This results in:
ϕ (r) =

ea

4πε0

1
|r− ra| . (2.11)

When we have a collection of charges, each ea at position ra the total
potential is just the sum of each potential:

ϕ (r) = ∑
a

ea

4πε0

1
|r− ra| (2.12)

Another example for potential is the potential from an infinite board
of charge laying on the x-y as plane studied above. Since the field is
constant the work is linear and so is the potential ϕ (r) = σ

2ε0
z.

The total potential of a charge distribution is always the sum of all
1
r terms from each of the charges (Eq 2.12). Thus we deduce from Eq.
(2.17): ϕii (r) = − 1

ε0
∑a eaδ (r− ra). The function ∑a eaδ (r− ra) is the

density of charge ρ (r) at point r and so we reach the Poisson equation
:

ϕii (r) = −
1
ε0

ρ (r) (2.13)
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It can be shown that this equation is equivalent to Gauss’ law.
Derivatives of 1

r

The derivatives of 1
r = 1√

r2
x+r2

y+r2
z

are

central in electrostatics. When r 6= 0 :(
1
r

)
i
= − ri

r3 (2.14)

A second derivative gives:

(
1
r

)
ij
=

∂

∂rj

(
− ri

r3

)
=

3rirj − r2δij

r5

(2.15)
By summing over i = j :(

1
r

)
ii
= 0, (2.16)

Including r = 0 gives:(
1
r

)
ii
= −4πδ (r) . (2.17)

2.4 Far-field electric potential by a molecule: molecular mul-
tipoles

A molecule is composed of a set of charges ea located at spatial posi-
tions ra. Thus the electric potential in space formed by the molecule
is given by Eq. (2.12). The charges making up the molecule are the M
nuclei and N electrons. The nuclei are indexed by A = 1, . . . M, where
nucleus A has z&A protons, each of charge +e positioned at RA; the
electrons are indexed by n = 1, . . . , N, where electron n has charge −e
positioned at xn. The same potential of Eq. (2.12) as can be written as:

ϕ (r) = ∑
a

ea

4πε0

1
|r− ra| =

M

∑
A=1

ez&A
4πε0

1
|r− RA|

−
N

∑
n=1

e
4πε0

1
|r− xn|

The structure of this potential is not easy to grasp, but it becomes
simple if we distance ourselves from the molecule, where we are at the
“far-field”. What is “far”? Where is “far”? This is determined of course
by the location and size of the molecule (see discussion on the right). Where’s the molecule? What’s

its size?

The molecule is composed of a M nuclei
and N electrons. So we can think of it
as “localized”, i.e. we can ask “where” is
the molecule and “what’s its size”.
Since nuclei move very slowly relative
to electrons we use their positions for
determining where the molecule is,
we take their charge-weighted average
position:

xcc =
∑M

A=1 z&A
RA

∑M
A=1 z&A

(2.18)

What is the spatial extent of the
molecule? Here we can average over
the deviance of each charge from the
center of charge:

D2 =
∑A z&A (RA − xcc)

2

∑A z&A
. (2.19)

This definition does not take into ac-
count the breadth of the electronic cloud
which protrudes (bulges out) by about
1.5Å; hence D should be enlarged by
about 3Å beyond the value of Eq. 2.19.

We have a molecule with center of charge at the origin xcc = 0
and we want to calculate the potential at a point displaced by r from
the molecule (see figure (2.1)). This point is “in the far-field” if the
molecule is small relative to the distance r, i.e. r � R. In this case, we
assume for all constituents|r| � |ra| so ra

r � 1.
Using the identity (r− ra)2 = r2 − 2r · ra + (ra)2 we have. The

scalar product A · B between two vectors, A and B is clearer if written
in terms of components: A · B = ∑i=x,y,z AiBi. We will simplify nota-
tions further and use the Einstein convention, that repeated Cartesian
indices are summed over; then: A · B = AiBi. Using this notation
we have: (r− ra)

2 = r2 − 2rira
i + r2

a which can then ve written as:

(r− ra)
2 = r2

(
1− 2 rira

i
r2 + r2

a
r2

)
and so:

1
|r− ra|

=
1√

1− 2 rira
i

r2 + r2
a

r2

× 1
r

(2.20)

Using Taylor’s expansion to 1st and second order (see development
on the right), we find the “multipole” expansion for the Coulomb po-
tential:

1
|r− ra|

=
1
r

1 +
rira

i
r2 +

3rira
i rjra

j − (ra)2 r2

2r4 + . . .


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r ra cos Θa = r×ra Θa

Molecule

Atom a

r

r a

Far-field point

Figure 2.1: The molecule and its atoms;
nucleus a is at position ra, the far-field
potential is measured at a distant point
r, making an angle θ with ra.

Taylor expansion of 1√
1−2ζ

Taylor expansion of a function
f (ζ)around ζ is a power series in the
variable ζ:

f (ζ) = f (0) + f ′ (0) ζ +
1
2

f ′′ (0) ζ2 + . . .

where the first term on the right is
the “zeroth order” term , the sec-
ond, linear in ζ is the first order term
the third, quadratic in ζ is the sec-
ond order term and so . For the func-
tion f (ζ) = 1/

√
1− 2ζ, we have

f ′ (ζ) = 1/ (1− 2ζ)3/2 so f ′ (0) = 1
and similarly f ′′ (ζ) = 3/ (1− 2ζ)5/2

so f ′′ (0) = 3, thus the expansion, to
second order is:

1√
1− 2ζ

= 1 + ζ +
3
2

ζ2 + . . .

Finally, we rearrange:

1
|r− ra|

=
1
r

1 +
rira

i
r2 +

3ri

(
3ra

i ra
j − (ra)2 δij

)
rj

2r4 + . . .


where we used the fact that r2 = riri = riδijrj (check that this is
correct). Multiplying by ea and summing over a we have finally the
following expression for the far-field potential:

ϕ (r) =
1

4πε0

[
Q
r
+

µiri
r3 +

riΘijrj

r5 + . . .
]
(r in far-field) (2.21)

where Q, µj and Θij are the charge, dipole moment and quadrupole
moment, defined as:

Q = ∑
a

ea

µi = ∑
a

eara
i

Θij =
1
2 ∑

a
ea

(
3ra

i ra
j − (ra)2 δij

)
The expansion of Eq. (2.21) is a series of additive terms, each in-

volving multiplication between instances of the position vector r, de-
scribing where we are evaluating the potential, and a moment tensor
which is a purely molecular property that can be calculated and tab-
ulated once and for all. For very large r = |r| only a small number of
terms is required for reasonably accurate estimation of the potential.
The first potential term on the right of Eq. (2.21) is a Coulomb po-
tential of the total charge Q; it is isotropic (the same in all directions)
and drops off slowly with distance, as r−1. When the molecule is neu-
tral, this potential is zero and the next term on the right of Eq. (2.21)
becomes noticeable, the dipole µ exerts a potential which decays as
r−2. This potential has an interesting of directionality as shown in
the gray box on the right. When the dipole is zero the next term, the
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quadrupole Θ becomes important and it decays as r−3 and has an even
more interesting angular distribution.

Feeling for the moment

We show 3 snapshots of a board, the first
from very far away, is barely seen as a
gray point; zooming in 4 times closer,
the lower-left is slightly blacker than the
upper-right; 4 times closer still we the
board is seen in full detail. Red arrow
represents the dipole vector. Zooming
in and out is what moments allow us
to do: from afar we only notice only
the monopole - the overall charge - of a
charge distribution; as we zoom in we
first feel the potential of its dipole and
then more details.

2.5 The point-dipole

Consider two charges, a charge e at R/2 and a second charge −e at
−R/2. These two charges are a neutral system, and at distance r � R
the potential they form was estimated in Eq. (2.21):

ϕD (r) =
1

4πε0

µiri
r3 (r far field) (2.22)

where:
µi = e× Ri

2
+−e× −Ri

2
= eRi

-2 -1 0 1 2

-3

-2

-1

0

1

2

3

x

y

Point dipole potential and field

2D contour plot in x-y plane of the po-
tential ϕD (r) = µ

4πε0

y
r3 of dipole µŷ

and the electric field lines (ED)j (r) =

µ
4πε0

[ 3yrj
r5 −

(
1
r3 + 4π

3 δ (r)
)

δjy

]
going

from positive into negative poles.

Strictly speaking, the potential is a far-field potential and only valid
for r � R. However, what happens if we take the limit of R → 0 i.e.
go to an infinitely small, point-like, dipole? Of course, we want to keep
the dipole µ constant, so at the same time that R shrinks to zero we
take the charge difference to infinity, e → ∞. What will the potential
and the electric field look like in this limit?

The dipole potential is expected to be valid at all points r 6= 0
because our idealized point dipole has no finite length scale R so all
points are now “far field”.

What about the electric field? This is obtained from the potential by
a derivative (Eq. (2.10)):

(ED)j (r) =
1

4πε0
µi

(
1
r

)
ji

(2.23)

For r > 0 the derivative is:
(

1
r

)
ji
= −

( rj
r3

)
i
= 3

rirj
r5 −

δij
r3 . Note

that this means that ∑i

(
1
r

)
ii
= 0 for all r > 0 and that this is not

fully compatible with Poisson’s equation ∑i

(
1
r

)
ii
= −4πδ (r). The

way to fix this then is to demand that
(

1
r

)
xx

= 3x2−r2

r5 − 4π
3 δ (r) or:(

1
r

)
ji
= 3

rirj
r5 −

δij
r3 − 4π

3 δijδ (r) and the electric field of a point dipole is:

(ED)j (r) =
1

4πε0

[
3
(µiri) rj

r5 −
µj

r3 −
4π

3
µjδ (r)

]
(2.24)

Note the new feature, of a delta function field right at the center of
the dipole. This field exists at a singular point and it results from the
electric field “imprisoned” in between the two point charges as they
approach each other when R→ 0.
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2.6 Quantum mechanical expressions for the potential

Up to now we have not talked about the quantum state of the molecule.
All we assumed are that the charges ea from which the molecule is con-
trived are at given positions ra. However, molecules obey the laws of
quantum mechanics and in quantum mechanics the low lying states
of the molecules do not in general allow determination of the exact
position of charges. Suppose that the molecule is in a quantum state
described by the wave function Ψ (r1, r2 . . . ) . The potential it creates at
far-field position r will not be a deterministic number. If we measure it
many times, under exactly the same conditions, we will find its value.

The quantum mechanical formalism requires that the positions of
the charges are ra become quantum mechanical operators, and acquire
a “hat” symbol to remind us: r̂a. This way, the potential becomes an
quantum operator ϕ̂ (r) = ∑a

ea
4πε0

1
|r−r̂a | . The measurable potential in

space is the expectation value of this r dependent potential:

〈ϕ〉 (r) = 〈Ψ |ϕ̂ (r)|Ψ〉 =
〈

Ψ

∣∣∣∣∣∑a

ea

4πε0

1
|r− r̂a|

∣∣∣∣∣Ψ

〉
.

The dipole and quadrupole moments become operators as:

µ̂i = ∑
a

ea r̂a
i

Θ̂ij =
1
2 ∑

a
ea

(
3r̂a

i r̂a
j − δij (r̂a)2

)
and their expectation values determine the potential:

〈ϕ〉 (r) = 1
4πε0

[
Q
r
+
〈µ̂i〉 ri

r3 +
ri
〈
Θ̂ij
〉

rj

r5 + . . .

]
.

Note,again, that we are using the Einstein summation convention by
which repeated Cartesian indices are summed.

-2 -1 0 1 2

-3

-2

-1

0

1

2

3

x

y

Quadrupole potential and field

2D contour plot superimposed on elec-
tric field lines for the quadruple po-

tential VΘ (r) =
Θij(3rirj−δijr2)

r5 for

Θ =

 0 1 0
1 0 0
0 0 0

 ea2
0.

2.7 Energy of a molecule in an electric potential

In the previous section we looked into the potential created by a
molecule. Now let us consider the effect of an external potential on
a given molecule.

The energy of a collection of charges in a electric potential ϕ (r) is
defined as the work required to bring the collection from infinity to its
final location in the field E (r) = −∇ϕ (r). Since this work is simply
the product of the charges and the potential, we find:

Wes = ea ϕ (ra) (2.25)
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(once again, note that repeated indices are summed over).
Let us develop the potential around a central position of the molecule,

which we take as the origin. Let us also assume that the potential
varies slowly over the molecule. Thus we can use the Taylor expansion
around r = 0 which, using the Einstein convention gives:

ϕ (ra) = ϕ + (ra)i ϕi +
1
2
(ra)i (ra)j ϕij + . . . (2.26)

Because of the Laplace equation ϕii = 0 we can add to the equation
this also as:

ϕ (ra) = ϕ + (ra)i ϕi +
1
2
(ra)i

(
1− 1

3
δij

)
(ra)j ϕij + . . . (2.27)

Multiplying by ea and summing over a we obtain for the electrostatic
energy of interaction of the molecule with the potential:

Ŵes = Qϕ + µi ϕi +
1
3

Θij ϕij + . . . (2.28)

we see that the same molecular quantities, the dipole moment µi and
the quadrupole moment Θij are involved in describing the interaction
energy of the molecule with an external electric potential. The dipole
µi couples to the potential gradient ϕi which is the electric field. The
quadrupole Θij couples to the derivatives, or non-homogeneity of the
field.

Taylor expansion of a function
of N variables

Taylor’s expansion of a function f (r)
where r =

(
rx , ry, rz

)
near the origin

(0) is a power series in the variables ri,
i = x, y, z. We write it in the condensed
form:

f (r) = f (0) + firi +
1
2

rirj fij + . . .

The derivative is written as a subscript:
fi ≡

(
∂ f
∂ri

)
(0)

and we used the Einstein

summation convention i, j = x, y, z.

As above the energy expression above must be considered as an
identity for operators. If the state of the molecule is Ψ (typically, the
groundstate) then the expectation value for the electrostatic energy is:

〈Wes〉 = ea 〈Ψ |ϕ (r̂a)|Ψ〉 (2.29)

= Qϕ + 〈µ̂i〉 ϕi +
1
3
〈
Θ̂ij
〉

ϕij + . . .

This expression, while true, is usually not very useful because we do
not know the ground state wave function. In chapter 4 (see page 27)
we will use perturbation theory to estimate the energy 〈Wes〉.



3
Polarizability, dielectric materials and solvation

We have seen that molecules interact with electric field exerted on
them. In this section, we would like to examine how their properties
are affected. The field δEj (j = x, y, z) exerts opposite forces an nuclei
and on electrons displacing nuclei in the direction of the field and
electrons in the opposite direction. Such a displacement will change
the expectation value of the dipole moment and we call this change
δ 〈µi〉 an “induced” dipole vector. Assuming a weak field δEj we expect
a linear relation

δ 〈µi〉 = αijδEj (3.1)

(summation over repeated indices assumed). The proportionality co-
efficient αij is a tensorial molecular property called polarizability. Note
the units of polarizability, which is 4πε0 times volume. In homoge-
neous media αij = α is a constant.

Polarizability is a most important property of matter responsible for
subtle effects seen in neutral systems. Polarizability can be a result of
various mechanisms. In spirit with the usual treatment of molecules
and materials, we use the Born-Oppenheimer approximation. In such
a case we differentiate between nuclei, which we treat as classical
objects and electrons which we treat quantum mechanically.

We shall study 2 types of polarizability, one we designate by α0 de-
scribed by slow motion, rotation, of the molecular nuclei and thus uses
classical mechanics and one by the fast motion of electrons described
by quantum mechanics.

3.1 Electronic polarizability

Up to now we dealt with the polarizability due to orientation of polar
molecules. However, even if the molecules have no dipole moment,
they can still be polarized due to the distortion of their electronic cloud
by an electric field. This kind of polarizability is called the electronic
polarizability α(e).
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In order to compute the electronic polarizability we consider a neu-
tral molecule with Hamiltonian Ĥ0 with its eigenfunctions and en-
ergies denoted by a superscript “(0)”: Ĥ0ψ

(0)
s = E (0)s ψ

(0)
s , where s

indexes the eigenstates of Ĥ0 and the corresponding eigenstates of
Ĥ. The molecule is now placed in a homogeneous field so the inter-
action is δV̂(1) = −δEjµ̂j (see Eq. (2.29) with δEj = −ϕj, taken
from Eq. (2.10)), so the full Hamiltonian of the molecule and field is:
Ĥ = Ĥ0 + δV̂(1).

Brief reminder of perturbation theory

For a perturbed Hamiltonian Ĥ = Ĥ0 + δV̂(1), we write energy as a
sum Es = E (0)s + δE (1)s + δE (2)s + ... where

δE (1)s =
〈

ψ
(0)
s

∣∣∣δV̂(1)
∣∣∣ψ

(0)
s

〉
, (3.2)

δE (2)s = ∑
s′ 6=s

∣∣∣〈ψ
(0)
s

∣∣∣δV̂(1)
∣∣∣ψ

(0)
s′

〉∣∣∣2
E (0)s′ − E

(0)
s

(3.3)

are respectively the first and second order energy corrections.
The wave function of Ĥ is also written as a sum of ψs (x) = ψ

(0)
s (x) +

δψ
(1)
s (x) where:

δ←(1)
s (x) = ∑

s′ 6=s
ψ
(0)
s′ (x)

〈
ψ
(0)
s′

∣∣∣δV̂(1)
∣∣∣ψ

(0)
s

〉
E (0)s − E (0)s′

(3.4)

is the first order correction.

As a result of the field induced distortion of the ground state wave
function ψg (we reserve the symbol s = g for the ground state) the
dipole expectation value changes by:

δ 〈µ̂i〉 =
〈
ψg |µ̂i|ψg

〉
−
〈

ψ
(0)
g |µ̂i|ψ

(0)
g

〉
plugging into this expression the first-order perturbation expression
ψg = ψ

(0)
g + δψ

(1)
g , we obtain:

δ 〈µ̂i〉 =
〈

ψ
(0)
g |µ̂i| δψ

(1)
g

〉
+ c.c

where “+c.c.” means that we add the complex conjugate. Combining
this expression with Eq. (3.4) and taking δV̂(1) = −δEjµ̂j (Eq. (2.29))
we obtain:

δ 〈µ̂i〉 = − ∑
s 6=g

〈µ̂i〉gs
〈
µ̂j
〉

sg

E (0)g − E (0)s

δEj + c.c

where s indexes the excited states of the system and we used the fol-
lowing notation for the unperturbed matrix elements of an operator

〈
ψ
(0)
s
∣∣X̂∣∣ψ

(0)
s′

〉
≡
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〈
X̂
〉

ss′ . Note that s may be a composite index, as for example in the hy-
drogen atom, where the bound eigenstates are indexed by 3 integers
ψs (r) ≡ ψnlm (r): l = 0, 1, 2, . . . is the angular momentum quan-
tum number, n = l, l + 1, . . . is the principal quantum number and
m = −l, . . . , l is the magnetic quantum number. This Eq. shows the
linear relation between the imposed field and the induced dipole from
which the polarizability tensor is given by (see Eq. (3.1) ):

α
(e)
ji = 2Re ∑

s 6=g

〈µ̂i〉gs
〈
µ̂j
〉

sg

E (0)s − E (0)g

(3.5)

Note that in the denominator we have the excitation energies of the
system, which are positive by definition and that when i = j the nu-
merator is also positive; thus we conclude that the diagonal elements
of the polarizability tensor are positive . This is what we would expect
from simple physical intuition: a field in the positive x direction will
push the positive charges in the positive x direction and the negative
charges in the negative x direction, thus inducing a positive dipole.

A material which has a large polarizability polarizes easily under
the action of a field. For high polarizability a molecule should have
low lying excitation energies E (0)s − E (0)g from the ground state and
correspondingly strong transition dipole matrix elements.

The evaluation of Eq. (3.5) can be quiet complicated. A useful ap-
proximation can be obtained when we assume that the denominator is
a constant equal to the ionization potential of the system. In this case:

α
(e)
ji ≈

2e2

I

(〈
rirj
〉

g − 〈ri〉g
〈
rj
〉

g

)
(3.6)

Example: The polarizability of the hydrogen atom: The ground
state is g = 1, 0, 0 orψ1,0,0 (r) = Ne−r/a0 and the energy is E (0)g = −Eh

2 .
The ionization potential is just the negative of the ground state energy,
so: I = e2

2×4πε0a0
. The integrals required for (3.6) are:

〈
1s
∣∣rirj

∣∣ 1s
〉
=

δij

3

´
ψ100 (r)

2 r2 × 4πr2dr´
ψ100 (r)

2 × 4πr2dr
= a2

0

and thus the approximation for the hydrogen polarizability is:

αij ≈ (4πε0)× 4a3
0δij. (3.7)

We note that an exact summation of Eq. (3.5) for the H atom yields
αzz = (4πε0) × 9

2 a03 , a value verified by experiment. Hence our ap-
proximate estimate, about 90% of the exact value, is quite reasonable.

3.2 Langevin polarizability

In the previous section, we calculated the electronic polarizability, as-
suming atomic nuclei are locked in place. In reality nuclei of molecules
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can move and of the molecule carries a permanent dipole, they can
rotate so as to align with the field. Since nuclei are heavy we can use
classical mechanics to treat this kind of effect. The effect of alignment
becomes interesting when combined with temperature. The tempera-
ture wants to scramble everything (increase entropy) while the exter-
nal fields tries to induce order. The race between two gives a combined
effect of polarizability.

Consider a dilute gas of N identical polar molecules (molecules
that have a permanent dipole, like NH3 or H2O) at temperature T.
The dipole ~µn of molecule n (n = 1, 2, . . . , N) is a vector of a known
constant magnitude |~µn| = µ but it’s orientation is unconstrained: it’s
dynamical. Due to collisions with the vessel wall or between molecules
each dipole ~µn fluctuates over time and the time-averaged dipole 〈~µn〉
becomes independent of n, so we simply drop the index n and set it
equal to 〈~µ〉. Clearly, the total dipole moment is, on the average equal
to
〈
~µtot〉 = N 〈~µ〉 (this is called the ergodic assumptions, by which the

time average of one molecule equals the average over many molecules
at a given time).

When the field is strong the average
dipole is the product of the permanent
dipole and the so called Langevin func-
tion:

〈µz〉 = µ

(
coth ξ − 1

ξ

)
(3.8)

where ξ = Ezµ/kBT and the polarizabil-
ity is then:

α = 3α

(
3
ξ2 −

3
sinh2 ξ

)
(3.9)
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ξ = Ezμ/kBT
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〈μ
〉/
μ

The polarization (top panel) and polariz-
ability (bottom panel) of a gas of dipolar
molecules. For strong fields practically
all molecules become aligned with the
field and the polarization saturates.

In the presence of an electric field Ez pointing in the z direction
the energy of each dipole is determined by its z-component: E =

−Ezµz (see Eq. (2.29) with Ej = −ϕj, taken from Eq. (2.10)) and it
is energetically favorable for each molecular dipole to orient with the
field, i.e. in the positive z direction. In the x or y direction there is no
preference so we can assume at the outset: 〈µx〉 =

〈
µy
〉
= 0, while

〈µz〉 =
´ µ
−µ e

Ezµz
kBT µzdµz

´ µ
−µ e

Ezµz
kBT dµz

.

For very weak fields we Taylor expand the exponential to first order:
ex ≈ 1 + x, hence:

〈µz〉 ≈

´ µ
−µ

(
1 + Ezµz

kBT

)
µzdµz

´ µ
−µ

(
1 + Ezµz

kBT

)
dµz

=
1
3

Ez

kBT
µ2

Thus, the average dipole 〈~µ〉 points in the z direction and is created
by the field because when the field is zero the dipole is zero. In fact,
it is linear with the field and the polarizability is the proportionality
constant (Eq. (3.1)):

α(L) =
µ2

3kBT
. (3.10)

This formula was first derived by the French physicist Paul Langevin
and it represents the “Langevin polarizability”. It shows that the po-
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larizability grows as the inverse temperature. In ideal cases, if the
gas is sufficiently dilute the polarizability can grow indefinitely as
T → 0. Furthermore, we see that the polarizability is proportional to
the square of the constant dipole moment magnitude µ. The Langevin
polarizability is often useful for liquids, however, if the dipole density
is high a correction must be applied fue to the interaction between
nearby dipoles, as done by Onsager in 1938.

In strong fields we may not linearize the Boltzmann distribution. Yet
in our case, a full analytical integral of the Boltzmann distribution is
not difficult. We thus give the results in the margin, showing saturation
effects in high electric field.

Combining the results of this section and the previous, we find that
for polar molecules the total polarizability is a sum of the Langevin and
the electronic polarizability, leading to the Langevin-Debye equation:

α = α(e) + α(L) (3.11)

Figure 3.1: A charge Q is transferred
between two plates of area A a distance
l apart. The electric field between the
plates is E = ε−1

0 Q/A. The device is a
capacitor of and the ratio of charge Q
and potential difference ∆ϕ = El is the
capacitance: C = Aε0/l.

3.3 The planar capacitor and dielectric materials

A planar capacitor (or condensor or Leyden jar as it was called by it’s
1745 inventors Ewald Georg von Kleist and separately Andreas Cu-
naeusand Pieter van Musschenbroek), is an electronic device composed
of two parallel plates of area A displaced by l �

√
A (see Fig 3.1).

The capacitor can store charge and energy. As we shall see below, from
an electronic perspective A and l determine the capacitance C = Aε0/l
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of the the capacitor. The overall charge of the capacitor is neutral
but charge can be transferred between the plates. When one plate is
charged Q′ the other is charged −Q′ and charge is smeared on each
plate so as to have even distribution with charge density σ = Q′/A
then the fiel d inside the capacitor is has field lines going from the pos-
itive to the negative plate (see Fig. 3.1). The electric field inside the
capacitor must be constant )not dependent on space and zero outside
of the capacitor. The magnitude is twice the field from a single plane
(Eq. 2.7):

Ez =
Q′

Aε0
= C−1 Q′

l

The capacitor is a device to store energy. To see this, let us suppose
we charge it little by little. Every time we transfer a small packet of
positive charge dQ′ from the negative to the positive plate . If the
plates are already charged by the amount Q′ then the next packet dQ′

will involve investment of energy in the form of work (since we are
forcing positive charge to go from the negative plate which attracts
it to the positive plate which repels it). The work is the force on the
packet EzdQ′ times the distance between the plates l, so the energy we
invested in this step is:

dE
(
Q′
)
= EzdQ′ × l = C−1Q′dQ′.

The total work in charging the capacitor with charge Q is then just the
integral on Q′:

E (Q) =
1
2

C−1Q2

The stored energy can be regained by allowing the charge to go
back from the positive plate to the negative one. As this happens we
can use the energy to light a bulb or do work.

Michael Faraday discovered circa 1837, that when an insulating ma-
terial (a substance that does not readily conduct electricity) is placed
to separate the capacitor plates, the stored energy of a Q-charged ca-
pacitor decreases by a material-dependent factor ε ≥ 1 called the
dielectric constant:

ε ≡ E vacuum (Q)

E material (Q)
=

Cmaterial
Cvacuum

In Fig. 3.2 we explain the effect in terms of the creation of a layer of
charge on the sides of the dielectric material.

A list of some materials and their dielectric constants is given in
Table 3.1. It can be seen that some materials, water for example have
huge dielectric constants. Thus a capacitor with water between its
plate will store 80 times less energy than that with air in between the
plates.

Material ε

Vacuum ≡ 1
Air 1.0006

Water 80 (20oC)
Methanol 30
Ammonia 17 (20oC)
Graphite 10-15
Diamond 5.5-10
Silicon 11.7

Ideal Metal ≡ ∞
Table 3.1: Dielectric constant for some
materials.
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The origin of the reduction of electric field due to the material
placed inside the capacitor is in the fundamental stricture of matter.
The fact that matter is composed of charges, arranged as electrons
and nuclei, allows the electric field to polarize the material,i.e. to cre-
ate within it a density of dipoles that are induced by the field. In the
caption of Fig. 3.2 we explain how such a polarization effect can in
principle affect the electric field. The connection between polarizability
and dielectric constants is discussed in the next section.

Figure 3.2: Positive (top, red) and
negative (bottom, yellow) charged plates
of a capacitor create an electric field Ecap
(cyan arrows) pointing downwards. A
slab of material with dielectric constant
ε is inserted between the plates. The
electric field E inside this material
induces a proportionate density of
dipoles P = (ε− 1) ε0E and this
relation serves as the exact definition
of ε. Whenever a material is polarized
uniformly there appears a thin layer
of negative (positive) surface charge
density σ = P on the slab’s top (bottom)
face. By Gauss’ law (Eq. 2.7), this
creates an additional electric field
Epol = −P/ε0 (green arrows) pointing
upwards forms inside the dielectric. In
addition, The total field inside the slab
is then E = Ecap + Epol from which
E = ε−1Ecap is deduced, showing that
the electric field inside a dielectric is
smaller than the field in its absence.

3.4 Dielectric constant derived from molecular polarizability

When a slab of material is placed in between two charged plates of a
capacitor, the electric field inside the creates a net density of dipoles.
This density is called polarization and it is described by a vector Pj

which gives the number of dipoles in direction j = x, y, z per unit
volume. For weak fields Pj is proportional to Ej and the proportionality
constant defines formally the dielectric constant of the material via the
equation: Pj = (ε− 1) ε0Ej (see Fig. 3.2).

If the material has a density of n molecules per unit volume then the
polarizability is Pj ≡

〈
µj
〉

n where
〈
µj
〉

is the average induced molec-
ular dipole. It is natural to suppose that

〈
µj
〉

is given by the molecular
polarizability α times the polarizing field Ej. However, there is a sub-
tle but important point here: a dipole cannot polarize itself! Thus
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〈
µj
〉
= EL

j α where EL
j = Ej −

(
ED
)

j, called the Lorentz field, is the
electric field after the average field created by µj has been subtracted.(

ED
)

j = n
´
(ED (r))j d3r is the field created by the molecular dipole

itself averaged over the molecular volume v = n−1. From Eq. (2.24)
we find

(
ED
)

j has 2 contributions: one, emanating from the integral

n
´ (3rirj−r2δij)

r5 d3r, is easily shown to be equal to zero for random place-
ment of the molecules (and also for most periodic structures of solids),
leaving only the δ-function contribution:

(
ED
)

j = −
n

3ε0

〈
µj
〉
= − Pj

3ε0
.

We thus conclude that the Lorentz field is EL
j = Ej +

Pj
3ε0

and since

Pj =
〈
µj
〉

n = nαEL
j . (3.12)

we find: Pj = nα
(

Ej +
Pj

3ε0

)
which can be solved for Pj to give:

Pj =
nα

1− nα
3ε0

Ej. (3.13)

Dipole moment and polariz-
ability of gaseous Ammonia
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ϵ - 1

ϵ + 2
≈ 12846.8 + 5.82435 T

A van Itterbeek,

K de Clippeleir,

Physica 14, 349–356 (1948).
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In the figure, red circles are experi-
mental results for VT ε−1

ε+2 vs. the tem-
perature T where ε is the measured
dielectric constant of gaseous ammonia
at 1atm and V is its molar volume (in
cm3). The gray line is a best fit linear
function with parameters shown in the
figure. From the fit NA

α(e)

3ε0
= 5.82435cm3

and NA
µ2

9kBε0
= 12846.8cm3K and thus

α(e) ≈ 29.01ε0 Å3 and µ ≈ 0.571ea0.
A common unit for the dipole moment
is the “Debye”, denoted D (after the
Dutch-American physicist Peter Debye),
1D = 0.3934ea0. Conclusion: The dipole
moment is µ = 1.452D; the electronic

polarizability is α
(e)
cgi = 2.309Å3 (in cgs

units ε0 = (4π)−1).

This is called Debye’s equation (1912). The dielectric constant ε is
defined in the caption of Fig. 3.2 as the relation Pj = (ε− 1) ε0Ej and
we conclude the following relation between the molecular polarizabil-
ity and the dielectric constant:

ε− 1 =
3nα

3ε0 − nα
, (3.14)

ε− 1
ε + 2

=
nα

3ε0
. (3.15)

The fact ε−1
ε+2 is proportional to the density n was noted already in 1850

by Ottaviano-Frabrizio Mossotti and the relation of Eq. 3.15 was noted
by the famous physicist Rudolph Clausius somewhat later, hence this
relation is named the Clausius-Mossotti equation. Note that when
nα/3ε0 � 1 i.e. the density or is very small one has:

ε ≈ 1 +
nα

ε0
(low density) (3.16)

We note that the concept of dielectric constant can be extended to
the alternating current (AC) regime, where it becomes frequency de-
pendent. In this case, the dielectric constant determines the refractive
index of transparent material through: N2 = ε. The Lorentz-Lorenz
relation for the refractive index:

N2 − 1
N2 + 2

=
nα

3ε0
. (3.17)

follows from Eq. 3.15 extended to the AC regime.
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3.5 The Born free energy and entropy of solvation

The energy of solvation of an ion of “radius” ri and charge Qi is de-
fined as the work required to move the ion from vacuum to deep inside
a dielectric medium of constant ε.

Born suggested the following 3-stage method for calculating this
quantity:

1. We first neutralize the ion by coating it with a thin shell of charge
−Qi at radius ri. Since the coating is of opposite charge energy
is emitted in the process and thus the work done on the system is
negative and we call it the negative vacuum energy of the ion−Ei.
In order to calculate it we gradually bring in the shell in N charge
packets ∆q = −Qi/N. The first packet releases energy equal to ∆q
times the potential around the ion at r = ri, which is (4πε0)

−1 Qi
ri

.

This process releases the energy ∆Ei (1) = (4πε0)
−1 Qi

ri
∆q. The

second packet sees an ion of smaller charge, since the charge of the
ion and the first packet is Qi − ∆q. Thus bringing the second packet
releases an energy of amount ∆Ei (2) = (4πε0)

−1 (Qi−∆q)
ri

∆q. The

energy released by the third packet is ∆Ei (3)=(4πε0)
−1 (Qi−2∆q)

ri
∆q

and so on. Summing up all such contributions yields a total vacuum
energy of Eion = ∑N

n=1 (4πε0)
−1 (Qi−(n−1)∆q)

ri
∆q. The result depends

on the number of packets N but in the limit N → ∞ (and ∆q =

Qi/N → 0) it converges to the integral Ei = 1
4πε0

´ Qi
0

(Qi−q)
ri

dq
which evaluates to:

Ei =
1

8πε0

Q2
i

ri
. (3.18)

2. Next, we move the resulting neutral system from vacuum to deep
inside an almost infinite dielectric slab. This process involves no
electrostatic work by the system (we assume the dielectric has an
empty pocket ready for the “coated ion”). If such a cavity needs to
be “excavated” then this stage has an addition energy involved W2

3. Finally, we remove the shell while the ion is in the dielectric medium.
The calculation done at this stage is essentially identical to that
done in vacuum with two differences: first the sign is reversed since
now we are removing the shell and second the work is reduced by a
factor ε−1 because the electric field doing the job is smaller by this
factor. Thus the work consumed by this stage is 1

ε Ei.

The energies we computed are non-expansive work done by the sys-
tem. These must equal the change in Gibbs energy upon solvation1. 1 The change in Gibbs energy in any

reversible process is equal to the non-
expansive work done on the system
during that change.

Neglecting W2 have:

∆G0
solv = Ei

(
1
ε
− 1
)

(3.19)
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The free energy of solvation is always negative (since ε ≥ 1) and in-
sensitive to the sign of the ionic charge Qi (this is squared in Eq. 3.18).
This means that the ion is more stable in the solvated state and work
−∆G0

solv must be done to bring the ion back to the vacuum.

Using the relation S = −
(

∂G
∂T

)
p,N

we can compute the entropy of

solvation ∆S0
solv = −

(
∂∆G0

solv
∂T

)
p,N

by differentiating Eq. (3.19) with

respect to temperature:

∆S0
solv = Ei ×

∂ε−1

∂T
(3.20)

Assuming that the dielectric medium is a collection of non-interacting
polar molecules as in the Langevin model of section 3.2 we can calcu-

late from Eq. (3.14) it is possible to obtain ∂ε−1

∂T = − ε0
n

(
1− 1

ε

)2
∂α−1

∂T
so:

∆S0
solv = −Ei

ε0

n

(
1− 1

ε

)2 ∂α−1

∂T
. (3.21)

From Eq. (3.10) we have ∂α−1

∂T = 3kB
µ2 , so the entropy in this case is:

∆S0
solv = −Ei

3kBε0

nµ2

(
1− 1

ε

)2
. (3.22)

We see that the entropy of solvation is negative. The reason is loss of
orientational degrees of freedom as the solute dipoles align with the
ion field.
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The basic non-covalent intermolecular interactions

In this chapter we learn about molecule-molecule interactions. The
level of this study is the quantum mechanical level. Using the interac-
tions we study here we can also derive other types, more mean field
interactions which will be discussed in the last chapter of this booklet.

4.1 The interaction energy between two distinct charge distri-
butions

So far, we have considered the far field potential of a charge distribu-
tion and the interaction of a charge distribution with a slowly varying
potential. We now combine the two theories by considering the elec-
trostatic energy of two localized and distant charge distributions. We
can consider charge distribution A around the origin and a distribution
B centered on a point rB. Using Eq. (2.28) we write the interaction
energy as:

WAB
es = QB ϕA (rB) + µB

i ϕA
i (rB) +

1
3

ΘB
ij ϕ

A
ij (rB) + . . . (4.1)

The potential of A is (keeping terms to r−3)

ϕA (r) =
1

4πε0ε

[
QA

r
+

µA
j rj

r3 +
ΘA

jkrjrk

r5 + . . .

]
.

Using the first derivative
(

1
r

)
i
= ∂

∂ri

(
1
r

)
= − ri

r3 , and the second

derivative is:
(

1
r

)
ij
=

3rirj−r2δij
r5 , we find:

ϕA
i (r) =

1
4πε0ε

[
−QAri

r3 −
µA

j
(
3rjri − r2δij

)
r5 + . . .

]
and:

ϕA
ij (r) =

1
4πε0ε

[
QA (3rirj − r2δij

)
r5 + . . .

]
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Now let us specialize, without loss of generality to the case that B is
on the x axis, namely that rB = (r, 0, 0), or ri = rδi,x. Then

ϕA (rB) =
1

4πε0ε

[
QA

r
+

µA
x

r2 +
ΘA

xx
r3

]
,

ϕA
i (r) =

1
4πε0ε

[
−QAδix

r2 − µA
x (3δix − 1)

r3 + . . .
]

,

ϕA
ij (rB) =

1
4πε0ε

QA (3δix − 1)
r3 δij

Plugging into Eq. 4.1, using ri = rδix and evaluating all the sums
over i and j, and using ΘB

ijδij = 0, we find, after rearranging:

WAB
es =

1
4πε0ε

[
QBQA

r
+

QBµA
x − µB

x QA

r2

+
µB

i µA
i (1− 3δix) + QBΘA

xx + ΘB
xxQA

r3

]
. (4.2)

The derivation of this expression was tedious, yet straightforward.
The energy of the non-covalent interaction between systems A and B,
both on the x-axis at distance r exhibits one charge-charge interaction
decaying as r−1, two charge-dipole terms decaying as r−2, a dipole-
dipole term and two charge-quadrupole terms decaying as r−3 and
finally, charge-dipole terms also decaying as r−3. Neglected terms
decay as r−4 or faster.

4.2 The interaction energy of distinct molecules

Consider two molecules, A and B, which are sufficiently distant that
we can think of their electron clouds as non-overlapping. We ask how
the energy of this system changes as these molecules change position
with respect to each other. The question is formulated within the Born
Oppenheimer approximation (BOA) as we control the nuclear degrees
of freedom and bring them from far apart to proximity. The energy of
the system is the groundstate energy of the Hamiltonian:

ĤAB = ĤA + ĤB + ŴAB
es (4.3)

where ĤA is the Hamiltonian of electrons of molecule A given that
its nuclei are at positions {RA} and a similar definition for molecule
B. The interaction between the two molecules is designated by ŴAB

es ,
which is the sum of the Coulomb interaction between pairs of particles,
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one from each molecule:

ŴAB
es =

e2

4πε0ε

[
∑
A,B

ZAZB

|RA − RB|
−∑

A,b

ZA

|RA − rb|
+

−∑
B,a

ZB

|RB − ra|
+ ∑

ab

1
|ra − rb|

]
, (4.4)

where we designate the electrons of molecule A positions by index a
and those of molecule B by b despite this, all electrons interact with all
nuclei in the same way, so they are essentially indistinguishable.

Pauli exclusion irrelevant for
“well-separated” electrons

We show that when two electrons are
held apart we do not need to impose
the Pauli principle. Consider a proba-
bility density for two one-dimensional
electrons Ψ (x1, x2)

2, where x1 is the
coordinate of the first electron and x2 of
the second. In the top left panel of the
figure below we show a “touching” pair
of electrons while in the top right we
show “well-separated” electrons. Pauli’s
exclusion principle requires that we
consider the density of either the sym-
metrized (singlet) or antisymmetrized
(triplet) wave function. Assuming the
latter, we plot the antisymmetrized den-
sity in the lower panels. We see that
unlike “touching” electrons the distri-
bution of “well-separated” electrons is
unaffected.

We view ĤeA + ĤeB in Eq. (4.3) as the unperturbed (zero order)
part while the intermolecular part is a first order perturbation. The
unperturbed wave functions are then simply the product

Ψ(0)
nm
(
r1 . . . rNA+NB

)
= Ψ(A)

n
(
r1, . . . , rNA

)
Ψ(B)

m
(
r1, . . . , rNB

)
. (4.5)

The zeroth order ground-state is Ψ(0)
00 , the product of the two ground

state wave functions Ψ(A)
0 and Ψ(B)

0 . At first sight this wave function
seems to violate the Pauli principle is problematic since it treats elec-
trons 1, . . . , NA differently from electrons 1, . . . , NB. In particular, the
Pauli principle, by which antisymmetry should be imposed on the wave
function, is not taken into account. We show in the discussion on the
margin that as long as the two fragments are non-overlapping, there is
no need to impose antisymmetry: the wave function will not change.

4.3 Perturbation theory

Perturbation theory is a technique for obtaining approximate solutions
to a Schrodinger equation in which the Hamiltonian is a sum of a
solvable Hamiltonian and a small perturbation. In out case, that of the
Hamiltonian in Eq. (4.3), when the distance between A and B is large
ŴAB

es is only a slight perturbation to ĤA + ĤB, which has eigenstates
E (0)nm = EA

n + EB
m and the eigenfunctions of Eq. (4.5). The first order

correction to the energy of the ground state is given by the expectation
value of the perturbation:

δE (1)00 =
〈

Ψ(0)
00

∣∣∣ŴAB
es

∣∣∣Ψ(0)
00

〉
(4.6)

The first order correction to the ground state wave function is

δΨ(1)
00 (x) = ∑

nm 6=00
Ψnm (x)

〈
Ψ(0)

nm
∣∣ŴAB

es
∣∣Ψ(0)

00

〉
E (0)00 − E

(0)
nm

(4.7)

Finally, the second order correction to the energy is given by:

δE (2)00 = − ∑
nm 6=00

∣∣∣〈Ψ(0)
nm
∣∣ŴAB

es
∣∣Ψ(0)

00

〉∣∣∣2
E (0)nm − E

(0)
00

(4.8)
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Note that the second order correction for the ground state, is always
negative!

4.4 Classical electrostatic interactions molecules

Applying Eq. 4.6 to the electrostatic energy of two molecules (Eq. (4.2))
we find (all expectation values are made with respect to the ground
state of the relevant molecule):

δE (1)00 = δE (1)ion-ion + δE (1)ion-dipole + δE (1)dipole-dipole (4.9)

There are several types of interactions appearing here.

Fundamental Ion-ion interaction

The strongest interaction is when both molecules are ions. Then the
interaction is predominately the coulomb interaction of two charges
decaying as the inverse of the distance between them:

δE (1)ion-ion =
1

4πε0ε
QAQB 1

r
(4.10)

One noteworthy issue is that this interaction is proportional to ε−1

and so can be reduced considerably in a polar solution, such as water
where ε ≈ 80.

Fundamental Ion-dipole interactions

Next we have the case of an ion interacting with a polar molecule
having a dipole moment component in the x direction:

δE (1)ion-dipole =
1

4πε0ε

〈
µA

x
〉

QB −QA 〈µB
x
〉

r2 . (4.11)

This interaction decays as the square of the inverse distance and it too
is sensitive to the dielectric constant.

Fundamental Dipole-dipole interactions

δE (1)dipole-dipole = − 1
4πε0ε

〈
µB

i
〉 〈

µA
i
〉
− 3

〈
µB

x
〉 〈

µA
x
〉

r3 . (4.12)

This interaction decays as r−3 and has an interesting dependence
on the direction of the dipoles. If both dipoles are in the x direction
then the interaction is attractive while when they are both in the y (or
z) direction it is repulsive. The following figure explains this behavior
qualitatively.
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4.5 Inductive molecular interactions

2nd order PT gives further types of interaction, called “induction”
which are weaker than the zeroth order and first order terms unless
the latter are extremely small or zero. The dielectric constant will be
entering the interaction as ε−2, thus the induction interactions are
especially small when the electronic dielectric constant of the medium
is much greater than 1. We will keep only terms up to r−6.

Fundamental Ion-Atom interaction

Consider first the interaction between an ion B of charge QB 6= 0 and
a neutral atom A (QA = 0, µA = 0,...). Clearly, there is no interaction
in the zeroth order since all moments of A are zero. The second order
induction which falls off slowest is the interaction between an ion and
a molecule:

δE (2)00

(
r−4 term

)
= −

(
1

4πε0ε

)2 (QB)2

r4 ∑
n 6=0

∣∣∣〈µA
x
〉

00,n0

∣∣∣2
E (0)n0 − E

(0)
00

(4.13)

which upon developing the expression and, using the definition of
polarizability Eq. (3.5) we find :

δE (2)Ion−Mol = −
(

1
4πε0ε

)2 α
(A)
xx
(
QB)2

2r4 . (4.14)

When B, say is the ion and A is the molecule, we find that the induc-
tive interactions decay as 1

r4 and are proportional to the charge of the
ion squared and the molecular polarizability.

Debye interactions: inductive permanent-dipole – molecule interaction

Next consider two neutral molecules, B with a permanent dipole〈
µB〉 = 0 and A with a dipole

〈
µA〉 = 0. Then

µB
i µA

i −3µB
x µA

x +QBΘA
xx+ΘB

xxQA

r3

δE (2)00

(
r−6 term

)
= −

(
1

4πε0ε

)2 1
r6 ∑

n 6=0

∣∣∣〈µB
i
〉

00

〈
µA

i
〉

0,n − 3
〈
µB

x
〉

00

〈
µA

x
〉

0,n

∣∣∣2
E (0)n0 − E

(0)
00

(4.15)

= −
(

1
4πε0ε

)2 1
2r6 µB

i µB
j
(
1 + 9δixδjx − 3

(
δix + δjx

))
αA

ij

(4.16)

When A is a spherically symmetric system αij = αδij we find:
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δE (2)dip−Atom = −
(

1
4πε0ε

)2 (µB)2
+ 3

(
µB

x
)2

2r6 αA. (4.17)

London dispersion interactions

Next, we consider the only term that survives even when QA = QB = 0
and µA = µB = 0. This is the so-called London dispersion interaction
(note that it exists also when the molecules are ions but then it might
be of lesser importance) and from Eq. (4.2) can be written as:

δE (2)vdW = − 1
ε2

CAB

r6 , (4.18)

with:

CAB =

(
1

4πε0

)2

∑
nm 6=00

∣∣∣〈Ψ(0)
00

∣∣µB
i µA

i (3δix − 1)
∣∣Ψ(0)

nm

〉∣∣∣2
E (0)nm − E

(0)
00

the C6 energy constant, as it is often called, since the interaction goes
as r−6 and has an angular dependence:

CAB =

(
1

4πε0

)2

(3δix − 1)2 ∑
nm 6=00

∣∣(µA
i
)

n0

(
µB

i
)

m0

∣∣2
EA

n0 + EB
m0

.

It is possible to convert the two fragment sum into a product of sin-
gle fragment sums. For example. when E > 0 we can use the identity:

1
E =

ˆ ∞

0
e−E tdt (4.19)

and then we define “time-dependent” polarizabilities:

αX
i (t) = ∑

n 6=00

∣∣∣(µX
i

)
n0

∣∣∣2 e−E
X
m0t, X = A, B (4.20)

so with these definitions the dispersion coefficient becomes:

CAB =

(
1

4πε0

)2

(3δix − 1)2
ˆ ∞

0
αA

i (t) αB
i (t) dt. (4.21)

This formula is very useful, as it involves just one function from each
species. So if we have αA

i (t) for each molecule in nature, we would be
able to easily assemble all the dispersion coefficients. One can also use
the experimental absorption spectrum of species Xto determine αA

i (t)
and thus connect the optical absorption properties of a molecule with
its dispersion interaction.
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London discovered a neat approximation, simplifying the expression

for CAB, by writing the sum as ∑nm 6=00
|(µA

i )n0|
2|(µB

i )m0|
2

EA
n0EB

m0

EA
n0EB

m0
EA

n0+EB
m0

and

assuming :
EA

n0EB
m0

EA
n0 + EB

m0
≈ IA IB

IA + IB ,

i.e. that the nth excitation energy of atom A, EA
n0, can be approximated

by its ionization energy IA (similar consideration holds for B). The
remaining sum now factorizes into a product of two atomic contribu-
tions:

∑
nm 6=00

∣∣(dA
i
)

n0

(
dB

i
)

m0

∣∣2
EA

n0 + EB
m0

= ∑
n 6=0

∣∣(dA
i
)

n0

∣∣2
EA

n0
∑
m

∣∣(dB
i
)

m0

∣∣2
EB

m0
,

each is half of the atomic polarizability (see Eq. (3.5)). Thus the C6 for
atoms in this London approximation is:

CAB =
1
4

(
1

4πε0

)2 IA IB

IA + IB (3δix − 1)2 αA
ii αB

ii (4.22)

For atoms, we can assume αA
ii is independent of i, and thus:

∑
i=x,y,z

(3δix − 1)2 αA
ii αB

ii = αAαB ∑
i=x,y,z

(3δix − 1)2 = 6αAαB

Thus, the London approximation is:

CAB =
3
2

(
1

4πε0

)2 IA IB

IA + IB αAαB (4.23)





5
Mean-field non-covalent interactions

In the previous chapter we studied the basic forces between molecules,
finding a certain heirarchy. These microscopic interactions are not
always the apparent forces seen in systems containing many molecules.
The reason for this is the thermal fluctuations which average out some
forces, leaving only special correlated motions as significant. We study
some of these effects in this chapter.

5.1 Exercises

1. Between two positive charges we install a spring of force constant
k > 0. The spring exerts a force on particle 1 equal to k (r1 − r2)

and an opposite force on particle 2. What is the equilibrium distance
between the two charges?

2. Prove that the electric potential charge ea at the origin is given by
Eq. (2.11).

3. Prove Laplace Equation, Eq. (??)) when ϕ (r) is given as the poten-
tial of a single particle in the origin (Eq. (2.11)).


